PORTABLE ONE USER'S MANUAL

ISSUE 5, Firmware Version 1.50
JUNE, 1992

Portable One User's Manual Contents

SAFETY SUMMARY .. 1-1
INTRODUCTION ... 2-1
SET-UP AND CHECK-OUT .. 3-1
 Front Cover Operation .. 3-1
 Changing Line Voltage Selection 3-1
 Functional Self Test ... 3-1
A QUICK INTRODUCTION TO OPERATION OF PORTABLE ONE 4-1
DETAILED OPERATIONAL DESCRIPTION 5-1
 SCREEN SAVER ... 5-1
 OUTPUT CONTROLS ... 5-1
 INPUT CONTROLS .. 5-1
 DISPLAY CONTROLS ... 5-2
 Setting Generator Parameters 5-2
 Generator Voltage Units—Open Circuit Voltage Calibration 5-3
 Generator dBm Units .. 5-3
 Loading and One vs Two Channels 5-4
 Setting Analyzer Parameters 5-4
 Bargraph Display Mode ... 5-4
FREQUENCY CONTROL SECTION .. 5-5
AMPLITUDE CONTROL SECTION ... 5-5
CONTRAST, INVERT .. 5-6
MONITOR ... 5-6
REAR AUXILIARY SIGNAL OUTPUT CONNECTORS 5-6
FUNCTIONS .. 5-7
 Units .. 5-7
 Why dBm? ... 5-8
 Audio Meters ... 5-8
 Voltage-Based Systems 5-8
 Old Habits Die Hard ... 5-8
 Percent and dB Units ... 5-9
 X/Y Units .. 5-9
 Amplitude Function .. 5-9
 Noise Function ... 5-10
 Level Function (2-Channel) 5-11
 THD+N Function (Total Harmonic Distortion + Noise) 5-12
 SINAD Function ... 5-14
 Phase Function .. 5-14
 IMD (Intermodulation Distortion) Function 5-15
 Ratio Function ... 5-16
 W+F (Wow and Flutter) Function 5-17
 XTALK (Crosstalk) Function 5-18
 AC MAINS CHECK (Power Line Monitor) Function 5-18
 GEN LOAD Function (Device Input Resistance) 5-19

FILTER INSTALLATION AND JUMPER SELECTION 6-1
 Option Filter Installation 6-2
 Monitor Loudspeaker Signal 6-3

APPLICATIONS .. 7-1
 Driving Unbalanced Inputs 7-1
 Frequency Response of Amplifiers, Mixing Consoles, Etc. 7-1
 Analog Tape Recorder Alignment and Performance Verification .. 7-1
 Reproduce Mode ... 7-1
 Record-Repeat Mode .. 7-1
 Compact Disc Players .. 7-2

DIAGRAMS .. 8-1
 Instrument Functional Block Diagram 8-1
 Rear Panel Connectors 8-1
 Control, Display, and Operator Interface 8-3
 Generator Output Circuit 8-3
 Analyzer Input Circuit 8-4

SPECIFICATIONS ... 9-1

INDEX ... 10-1
1. SAFETY SUMMARY

Please review the following safety information before operating:

All Audio Precision instruments are designed to be used with an approved three-conductor power cord and an ac (mains) power source with safety grounding. NEVER operate this instrument if the safety ground connection is unavailable or has been compromised.

For continued fire hazard protection, the main power fuse must be replaced only with one having the correct rating (see the “Changing Line Voltage Selection” section of the SET-UP AND CHECK-OUT chapter).

There are no operator serviceable parts inside this instrument. **DO NOT** attempt to service unless properly qualified.
2. INTRODUCTION

Audio Precision Portable One is a comprehensive two-channel audio test set. It includes the measurement functions of level (two channels simultaneously), noise (wideband, weighted, or selective), THD+N (total harmonic distortion plus noise), SINAD (ratio of (signal + noise + distortion) to (noise + distortion)), phase (interchannel or input-to-output phase shift through a device), SMPTE/DIN intermodulation distortion (option), real-time two-channel amplitude ratio (interchannel balance or device gain/loss), wow and flutter, real-time frequency-selective crosstalk, ac mains check (voltage, frequency, and distortion of the ac power line), and ac resistance of the input of the device connected to the generator output. Generally, three measurements are simultaneously displayed.

Portable One is self-contained, requiring no external computer to operate. All measurements are displayed on a back-lit LCD (liquid crystal display). Signals within the audible range may be audibly monitored via the built-in loudspeaker or headphones. Amplitude and level measurements may be displayed in user-selectable units from the list of Volts, dBm, dBu, dBV, dB (dB relative to a stored measured value), dBg (dB relative to the present generator output amplitude), and Watts. Distortion may be expressed in % or dB, and the absolute value of THD+N may further be displayed in most of the amplitude units listed above. Units selected for each measurement function are remembered by Portable One and will be automatically displayed when that function is next selected.

Signal generation capability includes low-distortion sine and square waveforms plus an intermodulation test signal if the intermodulation distortion option is present.

Portable One includes standard audio bandpass, 400 Hz highpass, 30 kHz and 80 kHz lowpass, tunable 1/3 octave bandpass, A-weighting, and CCIR weighting filters plus sockets for two optional filters. Filters selected in each measurement function are remembered and automatically selected again when that function is next selected.

![Portable One Front Panel](image)

Figure 2-1 Portable One Front Panel
3. SET-UP AND CHECK-OUT

3.1. Front Cover Operation

The two square blue buttons on top of the instrument are releases for the protective front cover. Press both buttons simultaneously, pivot the front cover down to a horizontal position, and slide it into its storage location below the front panel.

3.2. Changing Line Voltage Selection

The power (ac mains) receptacle, voltage-change and fuse block, and switch are located on the rear of the instrument. Check to see that the line voltage is correctly set for the voltage in use in your area. A small white plastic indicator tip will be visible in one of the four holes labeled with the four available line voltage settings—100V, 120V, 220V, and 240V. If the indicator is not at the correct setting for your area, remove the black plastic cover and fuse holder by prying it out with a small flat-blade screwdriver. The edge of a small etched circuit board will become visible (see Figure 3-1), with the white molded plastic part which is the voltage indicator straddling the outside edge of the board. Remove the board by withdrawing it using long-nose pliers. This circuit board is illustrated in Figure 3-2. The board should be re-oriented so that the edge labeled with the desired nominal voltage will be re-inserted first. The white plastic indicator must first be re-positioned until it is fixed into the notch at the opposite edge of the circuit card from the desired voltage range label, so that the small cylindrical tip will project from the rear to serve as the voltage range indicator when the cover/fuse holder is reassembled. Be sure the proper value fuse is used for the voltage range selected. Replace the cover, connect a power cable and turn the unit on.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>100V/120V</td>
<td>0.4A, 250V, 3AG</td>
</tr>
<tr>
<td>220V/240V</td>
<td>0.2A, 250V, 3AG</td>
</tr>
</tbody>
</table>

3.3. Functional Self Test

At any time, you may initiate a functional self-test of Portable One. Preferably, this self test should only be run when internal temperatures have stabilized after a warm-up period. The functional self test mode is entered through the AC MAINS CHECK function (see Figure 3-3). In this function, the lower left corner of the display shows SELF TEST. Pressing the lower left soft button enters self test mode. Figure 3-4 shows the self-test screen before the actual test sequence has been initiated. Note the instruction to remove any cable connections from the generator outputs; a voltage of 26 Volts will be present at these connectors during portions of the self test which could damage external
devices. Furthermore, noise or non-linearities in the input circuitry of an external device could cause self test to fail limits.

After removing any cables connected to the generator, press the lower left soft key now labeled START. The system will go into an automatic sequence of functional checks, with each measurement being internally compared to specifications; see Figure 3-5 for an example. The step number and name of the test are displayed across the center of the display. The test may be interrupted by pressing any button except INVERT. If any limit is exceeded, the test will display the out-of-spec reading and pause until the CONTINUE button is pressed; see Figure 3-6 for an example failure display. At the end of the series of tests, a final screen will display with a passed indication if all steps of all tests passed. A failed indication results if any one or more steps failed. See Figure 3-7 for an example of the “passed” condition. To exit from self test mode, press the QUIT button.
The self test sequence is as follows:

Generator Frequency Accuracy

<table>
<thead>
<tr>
<th>Test</th>
<th>Frequency</th>
<th>Amplitude Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Generator</td>
<td>100 Hz</td>
</tr>
<tr>
<td>1.1</td>
<td>1 kHz</td>
<td>15.0 V</td>
</tr>
<tr>
<td>1.2</td>
<td>10 kHz</td>
<td>5.0 V</td>
</tr>
<tr>
<td>1.3</td>
<td>100 kHz</td>
<td>2.0 V</td>
</tr>
<tr>
<td>1.4</td>
<td>2.0 V</td>
<td>1.5 V</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5 V</td>
<td>0.5 V</td>
</tr>
<tr>
<td>1.6</td>
<td>2.6 V</td>
<td>0.2 V</td>
</tr>
<tr>
<td>1.7</td>
<td>2.7 Generator</td>
<td>150 mV</td>
</tr>
<tr>
<td>1.8</td>
<td>2.8 Generator</td>
<td>50 mV</td>
</tr>
<tr>
<td>1.9</td>
<td>2.9 Generator</td>
<td>10 mV</td>
</tr>
</tbody>
</table>

Amplitude Accuracy

<table>
<thead>
<tr>
<th>Test</th>
<th>Amplitude Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Generator Amplitude</td>
</tr>
<tr>
<td>2.1</td>
<td>26.0 V</td>
</tr>
<tr>
<td>2.2</td>
<td>15.0 V</td>
</tr>
<tr>
<td>2.3</td>
<td>5.0 V</td>
</tr>
<tr>
<td>2.4</td>
<td>2.0 V</td>
</tr>
<tr>
<td>2.5</td>
<td>1.5 V</td>
</tr>
<tr>
<td>2.6</td>
<td>0.5 V</td>
</tr>
<tr>
<td>2.7</td>
<td>0.2 V</td>
</tr>
<tr>
<td>2.8</td>
<td>150 mV</td>
</tr>
<tr>
<td>2.9</td>
<td>50 mV</td>
</tr>
<tr>
<td>2.0</td>
<td>10 mV</td>
</tr>
</tbody>
</table>
System Flatness (Both Channels)
3.0 10 Hz
3.1 20 Hz
3.2 20 kHz
3.3 50 kHz
3.4 100 kHz
3.5 120 kHz
3.6 Input Attenuation Compensation @ 20 kHz
3.7 Gen Squarewave signal
3.8 Gen IMD signal (with IMD option only)

Bandwidth Limiting Filter Response
4.0 400 Hz HP
4.1 80 kHz LP
4.2 30 kHz LP
4.3 22 Hz-22 kHz BP @ 22.4 Hz
4.4 22 Hz-22 kHz BP @ 31.5 Hz
4.5 22 Hz-22 kHz BP @ 16 kHz
4.6 22 Hz-22 kHz BP @ 22.4 kHz
4.7 1 kHz SELECTIVE mode BP @ 1 kHz
4.8 1 kHz SELECTIVE mode BP @ 2 kHz

Weighting Filter Response
5.0 A-weighting @ 100 Hz
5.1 A-weighting @ 1 kHz
5.2 A-weighting @ 10 kHz
5.3 CCIR weighting @ 100 Hz
5.4 CCIR weighting @ 1 kHz
5.5 CCIR weighting @ 6.3 kHz
5.6 CCIR weighting @ 12.5 kHz
5.7 CCIR q-peak detector @ 1 kHz
5.8 CCIR-ARM detector @ 2 kHz

Residual Distortion @ 2 Volts
6.0 20 Hz THD+N, channel A
6.1 1 kHz THD+N, channel A
6.2 20 kHz THD+N, channel A
6.3 50 kHz THD+N, channel A
6.4 20 kHz THD+N, channel B
6.5 1 kHz THD+N, channel B
6.6 20 kHz THD+N, channel B
6.7 50 kHz THD+N, channel B
6.8 IMD (with IMD option only)

Residual Noise, 22 Hz-22 kHz BW
7.0 Chan A
7.1 Chan B

Phase
8.0 20 Hz
8.1 1 kHz
8.2 20 kHz

Wow & Flutter
9.0 1.0%
4. A QUICK INTRODUCTION TO OPERATION OF PORTABLE ONE

Basic operation of Portable One is simple; press a function button and read the display. NOISE function is obtained by pressing the AMPL/NOISE button a second time, and SINAD function by pressing the THD+N/SINAD button a second time.

The OUTPUT A and B buttons select which GENERATOR OUTPUT channel connectors will be driven, with the MUTE button turning off both channels simultaneously. The INPUT A and B buttons select which ANALYZER INPUT channel connector will be measured by the primary (wide dynamic range) voltmeter; the INPUT GEN button permits the signal at either generator output connector to be measured via internal cable.

The FREQUENCY and AMPLITUDE buttons and knobs normally control generator frequency and amplitude. The FREQUENCY controls also permit manually tuning the analyzer selective (1/3 octave) bandpass filter in selective analysis modes or the bandreject filter in THD+N FIX-TUNE mode. The AMPLITUDE controls also permit setting the end point calibration values of the bargraph in bargraph scale.
To increase useful lifetime of the electro-luminescent back-lighting of the LCD panel, the EL back-lighting is automatically turned off whenever 30 minutes pass without any button being pressed. The screen may be brought back to life by pressing any button.

The DISPLAY buttons control the form of the display and give access to the generator and analyzer parameter selections. DISPLAY GEN permits set-up of generator parameters, and DISPLAY ANLR or DISPLAY GEN+ANLR permit setting analyzer parameters. Six buttons, three above and three below the display, are “soft”; that is, they have different functions depending on the mode of the instrument. All selected analyzer parameters (measurement units, filters, etc.) are independently remembered by the instrument for each function, and will be restored when that function is next selected. The “factory default” settings may be restored at any time by turning off Portable One, then holding down the OUTPUT MUTE button while turning the power back on.
5. DETAILED OPERATIONAL DESCRIPTION

5.1. SCREEN SAVER

To extend the useful lifetime of the electroluminescent backlighting of the screen, the backlight is turned off whenever 30 minutes pass without any button being pressed. To turn the backlight on again, press any button. The first press of any button when the backlighting is off will not execute the function of that button. For applications where the 30 minute period is inconveniently short, a two hour period may be selected by holding down the BARGRAPH key while simultaneously pressing the INVERT key. The display backlight then turns off to indicate successful selection of the two hour mode, and must be turned back on by pressing any key. Turning power off and back on returns the default 30 minute period.

5.2. OUTPUT CONTROLS

The A and B OUTPUT buttons control the generator A and B output connectors. Both buttons have a “toggle” function; press to turn the specified channel ON, press again to turn OFF. For convenient noise and signal-to-noise ratio measurement, the generator output connectors are automatically reverse-terminated with the selected source resistance when OFF. The yellow indicators next to each button indicate when each corresponding channel is ON. The MUTE button turns OFF whichever channels are ON (both simultaneously if both were ON). When the MUTE button is pressed again, it restores the channel OFF/ON conditions present when it was previously pressed. Note that both output channels will be automatically turned OFF when NOISE function is selected, and the appropriate output channel will be turned OFF when XTALK or GEN LOAD function is selected.

5.3. INPUT CONTROLS

The A and B INPUT buttons select which front-panel input connector is connected to which analyzer channel within the instrument. The analyzer contains two voltmeters. The primary voltmeter is normally displayed in the top left portion of the LCD display. The secondary voltmeter is normally displayed in the top center portion of the LCD display. Pressing the A button causes the A ANALYZER INPUT connector to be connected to the primary voltmeter; pressing the B button connects the B ANALYZER INPUT to the primary voltmeter. The LCD display will indicate above each reading which channel it is reading; for example, THD+N A or LEVEL B. In LEVEL, RATIO, and XTALK functions, the primary voltmeter measures the signal at the selected input channel while the secondary voltmeter measures the signal at the alternate or reference (opposite) input channel. In most other functions, the selected input channel drives both primary and secondary meters with the primary meter channel being further processed by filters, discriminator (W+M mode), or demodulator (IMD mode). The monitor loudspeaker monitors the selected input channel except in LEVEL, RATIO, PHASE, or XTALK modes where it measures the opposite (reference) channel.

Figure 5-1 Output Controls

Figure 5-2 Input Controls
If the INPUT GEN button is pressed following the INPUT A button, the primary voltmeter will be connected directly across the generator A output via an internal cable, instead of connecting to the A front panel input connector. Similarly, pressing the GEN button following the B button causes the primary voltmeter to measure the generator B output connector via internal cable instead of from the front-panel-applied signal. The LCD display will indicate when it is measuring the generator via the internal cable; for example, LEVEL GA or THD+N GB. In LEVEL function, pressing the INPUT GEN button a second time then also switches the alternate channel to the generator connection, and the display will indicate LEVEL GA and LEVEL GB.

5.4. DISPLAY CONTROLS

The four DISPLAY buttons permit the several sections of the LCD display to be assigned to different tasks, both to display different information and to permit parameter setting. The GEN+ANLR button displays the most important generator and analyzer parameters at the center and bottom of the display, in addition to the measurements at the top of the display. ANLR mode displays only analyzer setup parameters plus measurements. Analyzer parameters may be changed in GEN+ANLR or ANLR display modes as described below. GEN display mode is used for setting generator parameters.

BARGRAPH mode provides analog bargraph display of the principal measurement parameter. BARGRAPH display mode also permits changing from the normal AUTORANGE mode to HOLD RANGE mode. This is useful not only to prevent “bouncing” of the bargraph display with consequent spoiling of the maximum and minimum hold feature, but also fixes the gain range to the rear auxiliary output connectors, the loudspeaker, and the headphone connector. The signal amplitude at these points will then vary directly with input signal amplitude, rather than abruptly changing when range switching takes place so as to remain relatively constant over a wide input signal range.

5.4.1. Setting Generator Parameters

The GEN DISPLAY button uses all the display for generator parameters, to permit setting some of the less-often-changed generator conditions (see Figure 5-4). The top left or bottom left soft buttons permit selecting the generator waveform from the choices of SINE, SQR (square), and IMD (SMPTe/DIN intermodulation distortion test waveform, if the IMD option is installed). IMD waveform is automatically selected when IMD measurement function is chosen, without needing to go to GEN DISPLAY mode to make the IMD selection. When going to another measurement function from IMD, the generator waveform will then be automatically changed to sinewave.

The top center soft button selects generator amplitude units from the choices of V (Volts RMS), dBV, dBU, dBm (600 Ohm reference), and Vp (Volts peak). Note that the generator dBM unit automatically corrects for the selected generator output impedance and for whether one or both outputs are turned on. It assumes that any output turned on is terminated into 600 Ohms.

The top right soft button, with IMD waveform selected, permits selecting the upper sinewave frequency of the IMD test signal. The bottom right soft button selects the lower sinewave frequency of the IMD test signal.

The bottom center soft button selects generator output impedance and balanced/unbalanced configuration from the choices of 40 Ohms balanced, 150 Ohms balanced (200 Ohms if option EGZ has been installed), 40 Ohms unbalanced, or 600 Ohms balanced. Note that the maximum available output amplitude is reduced by a factor of two with the unbalanced configuration.
5.4.1.1. Generator Voltage Units—Open Circuit Voltage Calibration

When a voltage unit (Volts, Volts peak, dBu, dBV) is used, the generator AMPLITUDE controls specify the generator open-circuit voltage (sometimes called emf, or electro-motive force). Unless the external load impedance is infinite, the actual voltage delivered to the load will be less than this open circuit voltage since the selected generator source impedance and the external load impedance act as a voltage divider. For example, if the 40 Ohm source impedance is in use and the generator output is connected to the analyzer 100 kilohm input, the voltage across the load will be

\[\frac{100,000}{100,000 + 40} = 99.96\% \]

of the open circuit voltage. With the 40 Ohm source impedance in use, the voltage across the load will differ from the open-circuit voltage by no more than 0.1 dB if the load is approximately 4,000 Ohms or higher. For a 10,000 Ohm load (typical of bridging inputs on many professional audio devices), the loading of the 40 Ohm source will produce approximately an 0.05 dB error.

5.4.1.2. Generator dBm Units

The dBm units are available as generator and analyzer measurement units. The generator cannot directly control output power, but only generator open-circuit voltage. The value in dBm set by the user will be valid only into a 600 Ohm external load impedance. The Portable One microprocessor knows the value of generator source impedance presently selected on the generator and uses that value to compute what the open-circuit voltage must be set to in order to produce a voltage across 600 Ohms resulting in the specified dBm (power) level in the 600 Ohm load. If the source impedance is changed to another available value, the processor re-calculates and re-sets the open-circuit voltage so as to maintain the specified power in the load. For example, setting 0 dBm into a 600 Ohm load (0.7746 Volts across the load) from a 40 Ohm source load will produce a generator open-circuit voltage of

\[0.826V = 0.7746V \frac{500 + 40}{600} \]

Changing the source impedance to 600 Ohms causes the open-circuit voltage to go to

\[1.549V = 0.7746V \frac{600 + 600}{600} \].
5.4.1.3. Loading and One vs Two Channels

With the generator amplitude set in dBm, the microprocessor assumes that both generator output connectors A and B are loaded with 600 Ohms if both A and B generator outputs are on. Violating this assumption will result in an amplitude calibraton error.

5.4.2. Setting Analyzer Parameters

The ANLR or GEN+ANLR display modes allow selection of analyzer parameters (see Figure 5-5). In AMPLitude and NOISE functions, WTD (weighted), UN-WTD (unweighted), and SELECTIVE filtering modes may be selected by the lower left soft button. THD+N function also has UN-WTD and WTD modes available. In WTD modes, the lower right soft button selects among the several weighting filters and detector responses available, and the lower center soft button permits selection of the lower band-limiting frequency. In UN-WTD modes, the lower center soft button controls the lower band limit and the lower right soft button controls the upper band limit. In SELECTIVE mode of AMPL and NOISE functions, the upper right portion of the display becomes an indicator of the center frequency of a tunable 1/3 octave bandpass filter and the FREQUENCY buttons and knob control the center frequency of that filter.

In THD+N function, the upper right soft button permits selection of notch (bandreject) filter tuning mode from the choices of GEN-TRACK, AUTO-TUNE, or FIX-TUNE. In SINAD function, the lower left soft button sets the notch filter at 400 Hz or 1 kHz, while the lower center and lower right soft buttons control the lower and upper band-limiting filter selections.

In PHASE function, the lower left soft button selects among three phase ranges. The lower right soft buttons selects between NOAVERAGE and AVERAGE modes.

In W+F function, the lower row of soft keys select between WTD and UN-WTD filtering, IEC (DIN) vs NAB vs JIS detector response, and PEAK vs 2-sigma processing.

5.4.2.1. Bargraph Display Mode

The BARGRAPH button uses the lower portion of the LCD for an analog bargraph display of the primary measured function (both channels in the case of LEVEL function). As measurements vary, the bargraph widens to show the minimum and maximum values reached since the last time the BARGRAPH button was pressed. This max/min hold can be re-set at any time by pressing the BARGRAPH button again.
When BARGRAPH display mode is first selected in a new Portable One unit, the measurement unit at the two ends of the bargraph will be the same as the unit in the upper left numeric display field. If the upper left soft key is used to change to another unit while the bargraph is displayed, the bargraph units and upper left display units will both change. If the display mode is changed to ANLR or GEN+ANLR and the upper left soft key used for still further unit changes, the now-invisible bargraph retains the unit selected when it was last visible. Going back to BARGRAPH mode will then show one unit in the upper left display field and a different unit at the two ends of the bargraph. Portable One will remember these units independently for each measurement function.

The bargraph calibration is linear between the end point values, with small dots at each 10% increment of the bargraph span. To change the end-point calibrations of the bargraph, press the soft button under the end to be changed. The calibration value will then be high-lit in inverse video. The AMPLITUDE buttons and knob may then be used to set the bargraph end point to the value desired. The step size of the INC/DEC and ±10 dB amplitude control buttons used to control bargraph end points will vary with the measurement function selected. In Phase function, the ±10 dB buttons cause 90 degree steps and the INC/DEC buttons make 10 degree steps. In AC MAINS CHECK function, the ±10 dB buttons adjust the bargraph end points to exact multiples of 10.0 Volts, and the INC/DEC buttons select exact 1.00 Volt values. If the soft keys at both ends of the bargraph are pressed to high-light both end point calibration values, they can both be shifted simultaneously by the AMPLITUDE controls with the span between them remaining constant.

5.5. FREQUENCY CONTROL SECTION

Generator frequency (or analyzer bandpass filter center frequency during selective analysis modes and bandreject filter frequency in THD+N FIX-TUNE mode) is controlled by the knob and four buttons in the FREQUENCY block at the upper right of the panel (see Figure 5-6). The x10 and +10 buttons increase or decrease the frequency by a factor of 10 from the present value (unless this would exceed the available frequency range). The INC and DEC buttons increase and decrease frequency according to the ISO standard 1/3 octave values, where the significant figures are:

- 1.00, 1.25, 1.60, 2.00, 2.50, 3.15, 4.00, 5.00, 6.30, 8.00, etc.

The frequency knob continuously controls frequency with fine resolution of 0.02%. One full rotation will change frequency by about 8%.

5.6. AMPLITUDE CONTROL SECTION

The knob and four buttons in the AMPLITUDE block at the lower right of the panel control the generator amplitude or bargraph end-point calibration in bargraph mode. The +10 dB and -10 dB buttons add or subtract exactly ten decibels to or from the present generator amplitude (or bargraph end point) value. When setting bargraph end points in AC MAINS CHECK mode, they step through integer multiples of ten Volts. In PHASE function, they step through 90 degree values. The INC and DEC buttons have slightly different functions depending upon whether generator amplitude (or measurement unit when setting bargraph end points) has been selected in linear (Volts) or logarithmic (dB) units. With decibel units displayed, INC and DEC control the amplitude at exact one decibel steps (2.00 dB, 3.00 dB, etc.). With linear units displayed, INC and
DEC will change the amplitude using the same set of significant figures described above for ISO standard values in frequency. When setting bargraph end points in AC MAINS CHECK function, INC and DEC provide integer multiples of one Volt. In PHASE function, they provide ten degree steps. The knob continuously controls amplitude with fine resolution of 0.0035 dB. One full rotation will change amplitude by about 17% or 1.4 dB.

5.7. CONTRAST, INVERT

The CONTRAST knob below the display adjusts the display contrast to optimize readability for almost any viewing angle. The INVERT button toggles between dark characters on a light background and light characters on a dark background.

5.8. MONITOR

The MONITOR block, below the left end of the display, contains the volume control knob and a headphone connector. An internal loudspeaker normally audibly reproduces the selected input signal before processing. Its intended uses are monitoring signal presence in a channel and listening for voice announcements on test tapes. If headphones are plugged into the connector, the loudspeaker is disconnected. The MONITOR knob adjusts the loudness of the loudspeaker or headphone signal. If it is more desirable to audibly monitor the final processed signal (following notch or bandpass filter and any selected high-pass, low-pass, weighting, and option filters), an internal jumper selects this signal instead of the input signal. See the FILTER INSTALLATION AND JUMPER SELECTION chapter for details.

5.9. REAR AUXILIARY SIGNAL OUTPUT CONNECTORS

Three BNC connectors are located on the rear panel of Portable One. These connectors are labeled SYNC, INPUT, and ANALYZER.

The SYNC connector provides a constant amplitude 1.0 Volt RMS sinewave signal at the generator frequency in sinewave and squarewave modes. In IMD mode, the SYNC signal is at the lower of the two intermodulation test signals in use. Source impedance is 680 Ohms ±10%. The principal intended application for the SYNC signal is to provide a stable trigger source for oscilloscope displays of the INPUT and ANALYZER output signals.
The INPUT connector carries a near-constant amplitude replica of the signal present at the selected input channel. This is the signal being measured by the primary voltmeter and, in most functions, displayed in the upper left corner of the display. The amplitude of the signal at the INPUT connector will remain in a 10-12 dB window between 2.8 Volt p-p and 0.7 Volt p-p over an input signal amplitude range of 140 Volts RMS through 25 mV RMS. Source impedance is 600 Ohms ±10%. The principal intended application for the INPUT connector is for monitoring the Portable One analyzer input signal on an oscilloscope or spectrum analyzer.

The ANALYZER connector provides a replica of the fully-processed ac signal in the analyzer. This is the final ac signal in the instrument, just before presentation to the instrument detector and display. This signal thus has been processed by all selected filters; low-pass, high-pass, weighting, optional AUXiliary filters, the tunable bandpass or bandreject, and by the IMD demodulator in IMD analysis mode or the wow and flutter discriminator in W+F mode.

5.10. FUNCTIONS

Twelve measurement functions are available by pressing the ten FUNCTION buttons. AMPLitude or NOISE are both selected by the AMPL/NOISE button; press once for AMPLitude, press again for NOISE. THD+N and SINAD are similarly selected by one button. Frequency or phase is measured in most functions and displayed at the upper right corner of the LCD, if the input signal amplitude is above about 8 mV (-40 dBu). If the amplitude is below that value, "Low" will be displayed instead of the frequency or phase reading.

5.10.1. Units

Most amplitude-measurement functions permit selection of measurement units by pressing the soft buttons above the display. The following units are available:

<table>
<thead>
<tr>
<th>UNIT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (Volts)</td>
<td>basic unit</td>
</tr>
<tr>
<td>dBV</td>
<td>0 dBV = 1.000 Volt</td>
</tr>
<tr>
<td>dBu</td>
<td>0 dBu = 0.7746 Volt</td>
</tr>
<tr>
<td>dBm</td>
<td>0 dBm = 1 milliwatt in 600 Ohms</td>
</tr>
<tr>
<td>dBr</td>
<td>0 dBr = signal amplitude present when "dBr ZERO" button is pressed; this value is displayed in DISPLAY ANLR mode when dBr units are chosen</td>
</tr>
<tr>
<td>dBg</td>
<td>0 dBg = presently set amplitude of the generator (Amplitude and Level measurement functions only)</td>
</tr>
<tr>
<td>W (Watts)</td>
<td>assumes 8 Ohm termination</td>
</tr>
</tbody>
</table>

To change the units with which the dBr reference value is displayed, select DISPLAY ANLR in LEVEL, PHASE, RATIO, XTALK, or IMD function. Use the top center soft key to select dBr units for the top center display. Then, use the lower center soft key to select units for the zero dBr reference.

The dBg (dB relative to generator output) unit is selectable in Amplitude and Level functions. The reference is the presently-set generator open-circuit voltage (emf) when the chosen generator amplitude unit is V, Vp, dBV, or dBu. When dBm has been chosen as the generator amplitude unit, the reference for the analyzer dBg unit is the generator output voltage into an assumed 600 Ohm termination. The dBg measurement unit provides a direct readout of gain or loss through the device under test. With the generator output unit selected as V, Vp, dBV, or
dBu, the gain value will be voltage gain. If the device has 600 Ohm input and output impedances and proper terminations and with dBm selected as the generator unit, the gain displayed will be power gain. Using the dBg unit and BARGRAPH display mode permits quick checks for compression, limiting, and saturation in a device as the generator amplitude is increased and decreased with the AMPLITUDE control buttons and knob. If the bargraph display is in dBg units while the upper-left numeric display is in an absolute unit such as dBu, it is easy to determine at what level the compression or saturation begins. See the “Bargraph Display Mode” section on page [setbargunit] for instructions on how to set different units into the bargraph and the numeric display.

5.10.1.1. Why dBm?

In the early years of broadcasting and professional audio, audio circuits with matched terminations and maximum power transfer were the common case in studios and for audio transmission lines between facilities. Console and line amplifier output impedances, implemented with vacuum tube and transformer technology, were typically 600 Ohms. Equipment input impedances, again usually transformer-matched, were also typically 600 Ohms. Maximum power transfer takes place when the source and load impedances are matched. For such systems, the dBm unit (dB relative to one milli-watt) was appropriate since it is a power unit.

5.10.1.2. Audio Meters

However, actual power-measuring instruments are extremely rare in audio. Audio meters and distortions analyzers are voltmeters, measuring voltage across their input terminals. They do not know the power level, current value, nor source impedance across which they are measuring. Since the broadcasting and pro audio industry had “grown up” with 600 Ohm power-transfer systems in common use, audio test instrument manufacturers typically calibrated their voltmeters for this situation. Most audio test instruments and systems manufactured before approximately 1985 used only Volts and the dBm unit on their meter scales and switch labels. The dBm unit was calibrated with the assumption that the meter would always be connected across a 600 Ohm circuit when measuring dBm. Since the voltage across a 600 Ohm resistor is 0.7746 Volts when one milliwatt is being dissipated in that resistor, the meters were actually calibrated for a zero “dBm” indication with 0.7746 Volts applied. But, they were not measuring power; change the circuit impedance, and the meter is incorrect.

5.10.1.3. Voltage-Based Systems

Modern broadcasting and pro audio equipment normally has output impedances much lower than input impedances. Output impedance values from zero up to 50 Ohms are typical, and input impedances of 10 kOhms are typical. Such equipment, connected together, transfers negligible power due to the large impedance mis-match. However, nearly all the source voltage is transferred. As noted earlier, a 10 kOhm load reduces the open-circuit voltage from a 50 Ohm source by only 0.5%, or 0.05 dB. Thus, modern systems typically operate on a voltage transfer basis and the dBm, as a power unit, is not appropriate. A proper unit for voltage-based systems is the dBu (dB relative to 0.7746 Volts). The dBu is a voltage unit and requires no assumptions about current, power, or impedance. Those older audio meters calibrated in “dBm” are really dBu meters.

5.10.1.4. Old Habits Die Hard

Unfortunately, the “dBm” terminology has hung on long after its use is generally appropriate. Even some of the most-competent manufacturers of high-technology digital and analog professional audio equipment still use the dBm unit in their setup instructions. Users are told to apply an input signal of “+4 dBm” and then to adjust trim pots for an exact 0 VU indication on a 24-track digital audio tape recorder, for example. Yet, the line input impedances of that tape recorder are 10 kOhms. What the manufacturer clearly wants is a +4 dBu input level (1.22 Volts). If we truly applied +4 dBm to that 10,000 Ohm input, the resulting 5.0 Volts would probably not even be within the trim pot adjustment range for 0 VU. So, a good general rule when working with modern audio equipment unless you know it to be terminated in 600 Ohms is to read the
manufacturer's "dBm" as "dBu". If in doubt about the actual termination value (and this is easily measured in GEN LOAD function), you won't go very far astray in using dBu with the Portable One generator's 40 Ohms source; 600 Ohms loads a 40 Ohm source by about 0.56 dB.

5.10.1.5. Percent and dB Units

THD+N, SINAD, IMD, RATIO, and XTALK functions also make available the dB unit, and THD+N, IMD, and W+F modes have the % unit available. These are defined as follows:

<table>
<thead>
<tr>
<th>Function</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>%</td>
<td>100*(noise + distortion)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(signal + noise + dist.)</td>
</tr>
<tr>
<td>THD+N</td>
<td>dB</td>
<td>20 log ((noise + distortion)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(signal + noise + dist.))</td>
</tr>
<tr>
<td>SINAD</td>
<td>dB</td>
<td>20 log ((signal + noise + dist.)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(noise + distortion))</td>
</tr>
<tr>
<td>IMD</td>
<td>%</td>
<td>100*(distortion)/(hf signal)</td>
</tr>
<tr>
<td>IMD</td>
<td>dB</td>
<td>20 log (distortion)/(hf signal)</td>
</tr>
<tr>
<td>RATIO</td>
<td>dB</td>
<td>20 log (selected channel)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(alternate channel)</td>
</tr>
<tr>
<td>XTALK</td>
<td>dB</td>
<td>20 log (non-driven channel)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(driven channel)</td>
</tr>
<tr>
<td>W+F</td>
<td>%</td>
<td>100*(freq. deviation of flutter)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(measured frequency)</td>
</tr>
</tbody>
</table>

5.10.1.6. X/Y Units

In RATIO function, the X/Y unit selection produces a "unitless" pure number display which is the ratio of amplitude reading on the selected channel to the alternate channel. This unit is intended for use in applications such as measuring transformer winding ratios.

In W+F function, frequency may be displayed in absolute (Hz and kHz) units or in delta% units. The delta% units are percentage deviation from the selected reference frequency (3.00 kHz or 3.15 kHz).

5.10.2. Amplitude Function

AMPLitude function measures the amplitude of the selected input channel and displays the result in the upper left corner of the LCD display. True RMS detection is used except in the CCIR-QPK and CCIR-ARM weighted modes as indicated below. Units are selectable by the soft button at the left above the display. Measured frequency is simultaneously displayed in the upper right corner of the display, except in SELECTIVE analysis mode when the upper right portion displays the center frequency of the 1/3 octave bandpass filter. Nothing is displayed at the top center. In GEN+ANLR or ANLR display modes, the lower left soft button selects among UN-WTD (unweighted), WTD (weighted),
and SELECTIVE modes. In UN-WTD mode, the lower center and lower right soft buttons permit selecting the lower and upper band limits (-3 dB points) to control analysis bandwidth according to the relevant specification and application. The lower right soft button selects among the following upper bandwidth limits; all use the RMS detector except for the 22 kHz-QPK choice which uses the quasi-peak detector per CCIR-468:

- 22 kHz
- 22 kHz-QPK
- 30 kHz
- 80 kHz
- >300 kHz

In WTD mode the lower right soft button selects among the available weighting filters and detector responses as follows:

- IEC-A: A-weighting per IEC 179, RMS detection
- CCIR-RMS: Weighting per CCIR-468, RMS detector
- CCIR-QPK: Weighting per CCIR-468, Quasi-peak detector
- CCIR-ARM: Weighting filter shape per CCIR-468, but with 0 dB gain point at 2 kHz rather than 1 kHz, average-responding detector per Dolby

<table>
<thead>
<tr>
<th>Bulletin 19/4</th>
<th>AUX1</th>
<th>Option filter socket 1 (RMS detection)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUX2</td>
<td>Option filter socket 2 (RMS detection)</td>
</tr>
</tbody>
</table>

5.10.3. Noise Function

NOISE function is selected by pressing the AMPL/NOISE button a second time. NOISE and AMPLITUDE functions are virtually identical except for reading rate. In the NOISE function, the reading rate is slower to allow more integration time for the measurement. The amplitude measurement of the selected channel is displayed at the upper left of the LCD; no other measurements are displayed in NOISE function. True RMS detection is used except in the CCIR-QPK and CCIR-ARM weighted modes. Units are selectable by the soft button at the left above the display. The generator output is automatically turned off in NOISE function (although it can be manually turned on again if necessary). In GEN+ANLR or ANLR display modes, the soft buttons under the display select among UN-WTD, WTD, and SELECTIVE modes and choose specific band-limiting or weighting filters and detectors as described above under AMPLITUDE function.

Operating convenience for many users is enhanced by setting up NOISE and AMPLITUDE functions with different filter and detector selections so that noise can be measured to two different stan-
5.10.4. Level Function (2-Channel)

LEVEL function simultaneously measures the level (amplitude) of both input channels, using true RMS detection. LEVEL of the selected input channel is displayed at the upper left of the LCD; LEVEL of the alternate input channel is displayed at the upper center. Soft buttons above each of these display sections permit selection of measurement units. Both meters must use the same units. The upper right section of the display can show ei-
ther frequency or phase, selectable by the soft button above. No filters are selectable in LEVEL function. LEVEL function is fully specified over the amplitude range between -38 dBu and +45 dBu (10 mV to 140 Volts), but may be used with increasing error and loss of measurement resolution below -38 dBu. Bargraph display in LEVEL function shows both channels in analog bargraph fashion. LEVEL function has the greatest amplitude accuracy of which Portable One is capable when the signal amplitude is greater than -38 dBu.

5.10.5. THD+N Function (Total Harmonic Distortion + Noise)

THD+N function uses a notch (bandreject) filter to eliminate the fundamental frequency from the input signal, then measures (true RMS detection except in WTD CCIR-QPK or WTD CCIR-ARM modes) and displays the remaining signal as total harmonic distortion plus noise. Selection of THD+N measurement mode automatically selects the sine waveform of the Portable One generator. THD+N of the selected channel is displayed at the upper left of the display, level of that channel at the upper center of the display, and the frequency of that channel at the upper right. Units are selectable by the soft buttons above each section of the display.

In all display modes except GEN, notch filter steering modes are selectable by the upper right soft button. Three choices are available for notch steering: AUTO-TUNE, GEN-TRACK, or FIX-TUNE. In AUTO-TUNE steering mode, the notch filter center frequency is automatically tuned to the signal frequency being measured by the frequency counter. Thus, in AUTO-TUNE mode the notch frequency will follow the frequency of an incoming signal from a tape, disc, or distant location in addition to the built-in generator. AUTO-TUNE mode requires that the signal amplitude be at least 25 mV (-30 dBu) for the frequency counter to function properly over its entire range. It is usable to below 10 mV. If the signal amplitude is below about 8 mV (-40 dBu), the upper left (THD+N) and upper right sections of the display will show "Low" instead of distortion and frequency measurements. AUTO-TUNE mode also requires that the signal be sufficiently "clean" (THD+N <10%) so that the frequency counter will function correctly.

GEN TRACK mode tunes the notch filter center frequency to the frequency of the internal generator. THD+N measurements are normally slightly faster in this mode than in AUTO-TUNE steering mode. GEN-TRACK is the preferred mode when making stimulus-response measurements under potentially noisy conditions, where line interference or noise can cause the frequency counter to read incorrectly.

Figure 5-15 Typical Display, THD+N Function
In FIX-TUNE mode, the notch filter center frequency may be set to any frequency in its range by use of the FREQUENCY knob and buttons. When FIX-TUNE is selected, the top right section of the display shows the filter frequency which may then be set to the desired value by use of the FREQUENCY buttons and knob. The primary application of FIX-TUNE mode is to enable quantization distortion measurements on low-amplitude signals from test compact discs, or k2/k3 (second and third harmonic distortion measurements) on tape machines in conjunction with optional bandpass filters.

THD+N measurements can be made on arbitrarily low amplitude signals in GEN-TRACK or FIX-TUNE modes. However, at amplitudes below about 10 mV (-38 dBu) the accuracy will suffer when THD+N is displayed in % or dB units, since the secondary voltmeter used to measure the input signal amplitude as the reference has limited dynamic range. Nulling time will also increase dramatically for inputs below 10-25 mV. In all other THD+N units (Volts, dBV, dBu, dBm, or dBr) the display is the absolute value of the noise and distortion signal and is independent of the secondary voltmeter reading.

In GEN+ANLR and ANLR display modes, the bottom row of soft buttons may be used to select WTD, UN-WTD, and AVERAGE modes. WTD and UN-WTD modes function and have subsidiary filters as described above under AMPLITUDE function. Weighting filters are rarely used in conventional distortion measurements, but the A-weighting filter is specified in THD+N function for dynamic range tests of compact disc players, for example. Selection of the proper band-limiting filters is of critical importance in THD+N measurements. The dominant signal is often wideband noise when measuring high-quality audio devices, so the specified band-limiting filter must be used if measurements are to correspond to manufacturer’s specifications. On many audio devices it is illogical to make THD+N measurements at a fundamental frequency above 1/3 to 1/2 the value of the low-pass filter, since the harmonics above 3rd or 2nd would then be filtered off in the instrument. On digital audio devices, however, alias products of high-frequency signals may fold down into the audio band and will be properly measured in THD+N mode.

The AVERAGE mode of THD+N, selectable by the lower left soft key, was designed principally for distortion measurements on analog tape recorders. AVERAGE mode takes eight measurements during a one-second period and displays the computed average of those measurements. Thus, AVERAGE mode reduces the “digit bobble” caused by flutter and noise in tape recorders.

![Figure 5-16 Typical Display, SINAD Function](image-url)
5.10.6. SINAD Function

SINAD is defined as the ratio of (Signal + Noise + Distortion)/(Noise + Distortion) in the output of an FM radio receiver. SINAD is thus similar to THD+N, except for the algebraic sign; for example, 12 dB SINAD corresponds to -12 dB THD+N. The SINAD technique is used in measurement of receiver sensitivity and interference rejection. SINAD function is selected by pressing the THD+N/SINAD button a second time, and always uses true RMS detection. SINAD also uses the bandreject filter, but fixed at either 400 Hz or 1 kHz as selectable by the lower left soft button. SINAD sets the generator frequency to 400 Hz or 1 kHz to match the bandreject filter frequency. SINAD is displayed at the upper left of the display, level at the upper center, and nothing at the upper right. SINAD is always displayed in dB; units for the level display are selectable by the soft key immediately above. Band-limiting filters are selectable in GEN+ANLR and ANLR display modes by the lower center and right soft buttons.

5.10.7. Phase Function

PHASE function displays the phase difference between the selected input channels. The result is displayed in the upper left portion of the LCD. Selection of PHASE measurement function automatically selects sine waveform from the Portable One generator. If INPUT A has been selected, the measurement and display will be the phase at input A using the input B signal as reference; the display will be labeled PHASE A-B. If INPUT B is selected, the display will be of phase at input B using the A signal as reference and the label will indicate PHASE B-A. If the INPUT GEN button is pressed following selection of input channel A or B, a cable from the corresponding generator output to the selected analyzer input is used instead of the front-panel ANALYZER INPUT connector. The phase indication will then be labeled PHASE A-G or PHASE B-G, depending on which channel is measuring the input connector and which channel is the reference (generator) channel. This permits measurement of the output-to-input phase shift of a device whose input is driven by the Portable One generator and whose output is connected to the analyzer.

In ANLR or GEN+ANLR display modes, the lower left soft button permits selection among the phase ranges -270/+90, -90/+270, or -180/+180. The -270/+90 and -90/+270 ranges are convenient when measuring devices or cables where the polarity is unknown. The lower right soft button selects between NOAVERAGE and AVERAGE modes. NOAVERAGE mode simply display unprocessed phase readings at a rate of approximately three per second. AVERAGE mode displays a running aver-

![Figure 5-17 Typical Display, Phase Function](image-url)
age of the last eight readings to reduce the effects of jitter. It is particularly useful when adjusting azimuth in tape machines.

When setting bargraph end points in phase measurement function, press the soft key under the end of the bargraph to be changed. The numeric value will change to inverse video. Now, the ±10 dB buttons will change the selected end-point value up or down in 90 degree steps and the INC/DEC buttons will change end points in 10 degree steps.

Both inputs must be at least 25 mV (−30 dBu) for specified accuracy, and have at least 40 dB signal-to-noise ratios. If the S/N ratio of either input is <40 dB, reading instability may result, particularly at low frequencies. If either input drops below about 8 mV (−40 dBu) or 10% of the selected input range, the phase display will show “Low”.

5.10.8. IMD (Intermodulation Distortion) Function

IMD function, if the Intermodulation Distortion Option is installed, displays SMPTE/DIN intermodulation distortion of the selected channel at the upper left of the LCD display. Level of that channel is displayed at the upper center, with nothing displayed at the upper right. Units for the measurements are selectable by the soft buttons above the LCD. The IMD measurement function accepts signals with a low frequency tone between 40 Hz and 250 Hz, a high frequency tone between 3 kHz and 20 kHz, and a low-to-high tone amplitude ratio between 0:1 and 8:1. The IMD measurement technique demodulates the AM (amplitude modulation) products of the upper tone caused by the presence of the lower tone. The measurement is bandwidth-limited to approximately 20 Hz−700 Hz to minimize noise contributions, yet pass the 3rd order IM products at 500 Hz when the low frequency tone is 250 Hz. Intermodulation distortion can only be displayed in % of (or dB below) the high-frequency tone amplitude, so no absolute units are available for the IMD reading.

Selecting IMD function automatically selects the IMD signal waveform from the Portable One generator, although the waveform can then be manually changed in GEN display mode. When going from IMD function to any other function, the generator waveform will change to sinus. With the DISPLAY set to GEN mode, the soft buttons above and below the right corners of the LCD permit selection of the generator high and low frequency tones. The high frequency tone may be selected as either 7 kHz or 8 kHz. The low frequency tone may be selected from the choices of 50 Hz, 60 Hz, 70 Hz, or 250 Hz. Although the SMPTE standard calls for a 60 Hz/7 kHz signal, experience suggests that the lower

![Figure 5-18 Typical Display, IMD (Intermodulation Distortion) Function](image)

Figure 5-18: Typical Display, IMD (Intermodulation Distortion) Function
tone should not be a multiple of the ac mains frequency. 250 Hz/8 kHz is an acceptable combination under the DIN standard. The amplitude ratio of the low-frequency tone to the high-frequency tone is fixed at 4:1.

5.10.9. Ratio Function

RATIO function measures the true RMS amplitude of both input channels, computes the ratio of those two amplitudes, and displays that ratio at the upper left of the LCD display. The selected input channel is the numerator of the computed ratio, and the alternate channel is the denominator. The label of the display will indicate the channel assignments (RATIO A/B or RATIO B/A). Level of the alternate channel is displayed at the upper right, selectable by the upper right soft button. Units for all measurements are selected by soft keys above the LCD display; the RATIO display unit may be dB or, with X/Y selected, the pure ratio number. No filters are
selectable in RATIO function. Selecting RATIO function automatically selects the sine waveform from the Portable One generator.

With both input connectors selected and a stereo signal applied, RATIO function is a measurement of channel balance. If the INPUT GEN button is pressed to connect an analyzer input to generator output via the internal cable path, the display will indicate RATIO B/G or RATIO A/G and the display will indicate the voltage gain or loss through the external device.

5.10.10. W+F (Wow and Flutter) Function

W+F function measures wow and flutter of tape recorders and turntables to the IEC (DIN), NAB, or JIS standards at frequencies of 3 kHz or 3.15 kHz. Wow and flutter is displayed at the upper left of the display, level of the measured signal at the upper center, and frequency of the measured signal at the upper right. Selection of W+F measurement function automatically selects the sine waveform from the System One generator. If the input frequency is not between 2.8 kHz and 3.35 kHz, the upper left display will indicate Hi Fr (high frequency) or Lo Fr (low frequency). The desired standard detector response is selected from the IEC (DIN), NAB, and JIS choices by the lower center soft key in ANLR or GEN+ANLR display modes. Weighted versus unweighted measurements are selected by the lower left soft key. The lower right soft key selects between PEAK measurements updated three times per second, or a running calculation of the 2-sigma value. The 2-sigma value is the value exceeded no more than 5% of the time (the second-highest reading of a running 20-reading group).

Wow and flutter is normally measured while playing a reference tape or disc which was recorded on a very low flutter machine. Wow and flutter of 3-head tape recorders should not be measured during simultaneous record-reproduce mode, since this will result in spectral nulls which can give erroneously low readings. If a reference tape is not available, record a 3.00 kHz or 3.15 kHz signal on a tape, then rewind the tape and measure during reproduce mode.

When a reference tape or disc is being played for the wow and flutter measurement, the measured frequency becomes a measurement of the speed error of the recorder or turntable. The soft key above the upper right of the display permits changing the display between absolute frequency and speed error in percent relative to the reference frequency. The display is labeled “FREQ” in absolute frequency mode and “3.00 kHz” or “3.15 kHz” to indicate the reference frequency used in the relative (speed error) modes. The unit in relative modes is delta%.

![Figure 5-21 Typical Display, XTALK (Crosstalk/Stereo Separation) Function](image-url)
5.10.11. XTALK (Crosstalk) Function

XTALK function measures the RMS level of the non-driven channel of a stereo pair or other two-channel system, using the tunable bandpass filter in order to make accurate measurements even below the wide-band noise level. Crosstalk is displayed in the upper left portion of the display, the driven channel in the upper center portion, and the measured frequency of the driven channel in the upper right. Units for the measurements may be selected with the soft buttons above the display. Selecting XTALK measurement function automatically selects the sine waveform from the Portable One generator, with the generator output channel corresponding to the selected analyzer input channel OFF and the alternate generator channel ON. When the opposite analyzer channel is then selected by the INPUT button, the generator output channel to be driven will be correspondingly changed. The analyzer bandpass filter is automatically tuned to the signal frequency measured on the driven channel. If the signal on the driven channel is below 8 mV (-40 dBu), the counter cannot read the frequency accurately and the XTALK and FREQ displays will both indicate "Low". No fixed filters are selectable in XTALK function.

When the dB unit is selected for XTALK, the display is the computed, real-time dB difference in amplitude between the driven and non-driven channels. The other XTALK units (Volts, dBV, dBU, dBm, and dBr) display the absolute value of amplitude on the non-driven channel.

5.10.12. AC MAINS CHECK (Power Line Monitor) Function

AC MAINS CHECK function measures and displays three key parameters of the ac mains (power line) supplying Portable One. This provides this often-needed information without the difficulty and hazard of making up or using ac mains cables connected to the instrument input. The RMS voltage of the mains supply is displayed at the upper left of the display, THD+N (20 kHz bandwidth) at the display center, and power mains frequency at the upper right. The signal at the rear-panel ANALYZER BNC connector in AC MAINS CHECK mode consists of the distortion products following the THD+N notch filter.

The bargraph function may be conveniently used to monitor the ac mains supply for extended periods of time, with the wide portions (minimum hold and maximum hold) of the bargraph then indicating the extreme values reached by the power line during the monitoring period. To set bargraph end point cali-
bation, press the soft button under the end of the bargraph to be changed. The AMPLITUDE buttons and knob may then be used to set the value desired. The +10 dB and 10 dB buttons select values which are exact multiples of 10.0 Volts in this mode, and the INC and DEC buttons select exact multiples of 1.00 Volt.

AC MAINS CHECK function is also used as the access to self test mode. In GEN+ANLR or ANLR display mode, the lower left soft button is labeled SELF TEST when in AC MAINS CHECK function. Pressing this button enters self test mode and enables a functional test of Portable One. See the SET-UP AND CHECK-OUT chapter for more details on self test.

5.10.13. GEN LOAD Function (Device Input Resistance)

The GEN LOAD function measures the ac resistance (magnitude) of the load connected to either generator output connector. The measuring technique uses the 600 Ohm source impedance of Portable One, measures the terminal voltage with the external load connected, and computes the value of the equivalent resistive load. The technique is thus quite sensitive at low values of device input resistance and becomes progressively less sensitive at high values, indicating only “>20 k” in the case of very high load resistances. Selecting GEN LOAD function automatically selects the sine waveform from the Portable One generator. This measurement is normally made at 1 kHz, but the generator frequency may be changed to any other value if desired to see any variation of device input resistance with frequency. Note that a 200 mV signal is normally applied to the output connectors in order to make this measurement, so be sure a signal of this level will not harm the device to be measured before connecting the cable and selecting GEN LOAD.
6. FILTER INSTALLATION AND JUMPER SELECTION

NOTE: Refer all servicing to qualified personnel.

If you purchase option filters after your Portable One was originally delivered, you will need to install them yourself. You may also wish to change the location of an internal jumper which controls whether the built-in loudspeaker monitors the input signal (normal factory-shipped setting) or the "analyzer" signal, following all filters (same as rear panel ANALYZER BNC connector). This chapter describes how to open the Portable One case and make the filter installation or jumper change.

6.1. Option Filter Installation

If your Portable One was ordered with optional filters, they will have been installed in the FILTER 1 or FILTER 2 sockets at the factory and documentation will have provided with the instrument to indi-

![Figure 6-1 Opening the Portable One Case](image)
6.1. Option Filter Installation

If your Portable One was ordered with optional filters, they will have been installed in the FILTER 1 or FILTER 2 sockets at the factory and documentation will have provided with the instrument to indicate what filter is in which socket. If you purchase option filters later to install yourself, the installation process is as follows:

1. Disconnect Portable One from the ac mains supply and place it, top down, on a table or bench. Ensure that the front panel cover is in the open position.

2. Using a Phillips-head (cross) screwdriver, remove the seven screws recessed into deep holes in the bottom of the instrument (see Figure 6-1). Do not remove the two screws holding on the rear feet or the four small screws holding the tilt bail assembly in place. Note that the screw nearest the handle is longer than the others; it must be replaced in its original location during re-assembly.

3. Remove the bottom half of the plastic case by lifting it vertically. Note that the handle assembly and the two wire-formed anchors for a shoulder strap will be freed when the bottom of the case is removed. Remove them and set them aside for re-installation.

Figure 6-2 Auxiliary Filter Socket Locations and Monitor Loudspeaker Jumper Locations
4. Remove the chassis and panel assembly from the top half of the case by lifting directly upwards. Turn the chassis assembly over so that it is right side up. The two sockets for option filters are located near the right rear of the main analyzer circuit board (see Figure 6-2). They are clearly labeled FILTER1 and FILTER2 on the circuit board. Plug the filter(s) into whichever socket is desired.

5. Turn the chassis and panel assembly over and re-assemble it into the inverted case top, aligning the front and rear panel edges with the slots in the case.

6. Re-assemble the bottom half of the case to the unit by aligning the front slots with the edges of the front panel and the rear slots with the rear panel. Slide the case down, keeping it level so that it does not bind on either front or rear panel. Replace the shoulder strap anchors and be sure that the carrying handle is in place before the two case halves meet. Re-insert and tighten the seven screws, taking care that the one longer screw is used in its original location nearest the handle. CAUTION: Do not overtighten the screws! Tighten them only to the point that they feel snug and will not loosened themselves.

7. Re-connect power to the unit and turn it on. Select AMPLITUDE function, INPUT A GEN, and use PANELS mode with analyzer setup parameters displayed to select the newly-installed filter(s). Verify their correct function by measuring their frequency response.

6.2. Monitor Loudspeaker Signal

The built-in monitor loudspeaker or headphone jack normally monitors the selected analyzer input signal, following input autoranging but before all filtering. For some applications, it may be more desirable to monitor the “ANALYZER” signal. This is the final processed signal in the instrument, following the bandreject or bandpass filter and any highpass, low-pass, weighting, or optional filters selected (see the instrument block diagram in the DIAGRAMS chapter). To change the monitor signal, unsolder and remove the internal jumper shown in Figure 6-2 from its factory-installed position and reinstall it in the alternate location as shown in the drawing.
7. APPLICATIONS

7.1. Driving Unbalanced Inputs

The generator output may be selected as unbalanced in the GEN DISPLAY mode. When unbalanced output is used, pin 2 of the XLR connectors is high and pin 3 is low.

7.2. Frequency Response of Amplifiers, Mixing Consoles, Etc.

For response measurements on most audio electronics devices, use LEVEL function with dB unit units. Set the dB reference to zero by pressing the "dB ZERO" button at a midband frequency such as 1 kHz. Select bargraph display mode with bargraph end points such as +5 and -5 dB. Then, use the INC/DEC frequency buttons for 1/3 octave steps up and down through the audio band. The wide portions of the bargraph (maximum/minimum indicators) will show the total response excursion over the band.

7.3. Analog Tape Recorder Alignment and Performance Verification

7.3.1. Reproduce Mode

LEVEL function with dBu units, with phase displayed in the upper right display, is most convenient for most adjustments of the reproduce section of analog tape recorders. If there is any doubt which tone is being played on the reference tape, the phase display may be temporarily changed to frequency. Bargraph display mode is also desirable for most adjustments.

The reproduce level controls of both channels may be set for the specified line level output while playing the reference fluxivity section of a reference tape.

The reproduce head azimuth may then be adjusted while playing a high-frequency section of the reference tape (typically 8 kHz to 16 kHz). Azimuth should be adjusted first for a maximum amplitude indication on both channels, then finally for an average zero degrees phase shift between the channels. To obtain a bargraph display of phase, it will be necessary to select PHASE function (-180/+180 degrees) rather than measuring phase in LEVEL function. AVERAGE phase display mode is preferable to reduce the visible jitter of phase measurements at high frequencies.

The reproduce treble level (equalization) controls of both channels are then set to produce flat response at a high frequency, typically 10 kHz-14 kHz. Many reference tapes, especially at the lower tape speeds, have the frequency response tones recorded at a level lower than the reference fluxivity level. In such a case, it is convenient to change the LEVEL units from dB to dB and press the "dB ZERO" button to establish the zero dB reference while playing the mid-band reference frequency (usually 1 kHz) of the frequency response section of tones. Then, at the chosen high-frequency tone, the treble level controls may be set for a zero dB display.

7.3.2. Record-Reproduce Mode

The record level controls on both channels may be set for specified line output level while driving the line inputs at the specified line level and measuring the outputs in LEVEL mode with dBu units.

For azimuth alignment of the record head in record-repro mode, it is recommended to start alignment at a moderate generator frequency such as 1-4 kHz and adjust the record head azimuth for zero degrees phase shift between channels. Then, the generator frequency should be changed to 10-12 kHz for a more sensitive final azimuth adjustment.
For record bias adjustments by the overbias technique, use LEVEL mode with dBr units. Set the generator to 10 kHz at 20 dB below normal line level. Start with the recorder bias control at minimum and slowly increase it while looking for a maximum output on the channel being adjusted. When the maximum is found, press the dBr ZERO button. Then, further increase the bias until the level decreases by the specified amount of overbias for the tape type and tape speed in use. Repeat this process for the alternate channel.

The record head azimuth alignment should be rechecked after adjusting bias, since the effective azimuth angle depends both upon the mechanical azimuth and the amount of bias current in the head. It may be necessary to repeat bias and azimuth adjustments more than once to arrive at the final correct values.

For record treble level (equalization) adjustment, LEVEL function with dBr units is the most convenient. A bargraph display with end points of perhaps +5 and -5 dBr is convenient. The generator output should be set 20 dB below normal line level to avoid any possible tape saturation effects. It is convenient to use the x10 and +10 frequency buttons to instantly change the generator frequency from a midband reference frequency to a high-frequency value. For example, the generator can be set to 1 kHz, then quickly changed between 1 kHz and 10 kHz with these buttons while adjusting record treble equalization for equal output at the midband and high frequency.

For a final frequency response verification following alignment, LEVEL mode with dBr units is recommended. Select bargraph display with +5 and -5 dBr end points. Press the dBr ZERO button while recording and reproducing at a midband frequency such as 1 kHz. Then, use the INC/DEC (1/3 octave) frequency buttons to step up and down through the entire audio frequency range. The wide areas (maximum/minimum indicators) of the bargraph will show the total excursion across the audio band.

For k3 (third harmonic) distortion measurements such as when measuring MOL (maximum output level), install an optional bandpass filter in one of the auxiliary filter sockets. With a 1 kHz fundamental frequency, for example, a 3 kHz filter (FBP-3000) will be used. Select THD+N function with WTD response and the optional filter selected. The THD+N indication is then 3rd harmonic distortion if the generator frequency is 1 kHz.

7.4. Compact Disc Players

All tests of CD players must be made while playing specially-recorded test discs carrying the proper signals.

Frequency response is preferably measured while playing a track with a sweep tone across the entire band. LEVEL mode with dBr units and bargraph display should be used. Bargraph end points of +5 and -5 dBr are appropriate for CD players. Play a mid-band (typically 1 kHz or 997 Hz) reference track (often such a signal is recorded at the beginning of the sweep track) and press the "dBr ZERO" button to set the reference. Then, watch the bargraph as the tone sweeps. The wide (maximum and minimum) portions of the bargraph will show the maximum excursions from flatness. If a test CD with sweep tone is not available, a series of tracks at different frequencies and fixed amplitude may be used. However, the output of the player will drop to nearly zero between tracks, so the maximum/minimum feature of the bargraph will not be useful.

THD+N versus frequency of CD players is measured in THD+N function, using a series of full amplitude test tracks at different frequencies. The analyzer must be in AUTO-TUNE mode so that the THD+N notch filter is steered by the frequency counter. The 22 Hz-22 kHz bandpass filters should be used in this application.

Linearity adjustments of the D/A converters in CD players must be made at very low amplitudes, typically 70 to 90 dB below full scale. Such measurements must be made in SELECTIVE mode of the AMPLITUDE function. SELECTIVE mode engages a 1/3 octave bandpass filter to permit accurate
amplitude measurements below the wideband noise level. In DISPLAY ANLR, use the FREQUENCY controls to set the SELECTIVE filter center frequency (as displayed in the upper right portion of the display) to the frequency of the low-amplitude signals on the test CD which will be used for adjustments. This should preferably be a dithered signal, such as track 19 (997 Hz) on the CBS CD-1 test disc. Use the dBr units. To calibrate the dBr reference, locate a full-amplitude test track at the same frequency as the low-amplitude tracks which will be used for the actual adjustments. Press the “dBr ZERO” button while playing this full amplitude track. Then, play the low amplitude tracks and adjust the D/A converter linearity control for the best agreement with the amplitudes specified on the CD test disc. On the CBS test disc, for example, the amplitudes of the four indexed sections on track 19 are -70.31, -80.77, -90.31, and -100 dB. A typical adjustment procedure would be to play the -70.31 dB track and adjust the D/A for -70.3 dBr, then play the -90.31 section and re-adjust as necessary for -90.3 dBr, and finally arrive at a compromise setting which produces minimal errors at all four amplitudes.
8. DIAGRAMS

This chapter contains several diagrams to assist your understanding of how Portable One accomplishes its measurement tasks. While knowledge of internal circuitry is not required to in order to operate Portable One, it may be more intelligently applied and limitations may be better understood by reference to these diagrams.

8.1. Instrument Functional Block Diagram

Figure 8-1 is a simplified block diagram of Portable One. The generator consists of a sinewave main oscillator or squarewave generator transformer-coupled to the output connectors. Figure 8-2 shows more detail on the generator output circuitry. When the IMD (Intermodulation Distortion) option is present, a second sinewave oscillator is added whose output is summed with the main oscillator to provide the necessary two-tone output signal. With the IMD waveform selected, the rear connector carries the lower-frequency of the IMD tone pair.

The Portable One analyzer consists of two identical wide-range autoranging preamplifiers, a principal meter with filters, a secondary meter, a wow and flutter discriminator, and phase and frequency meters. The principal meter consists of a switchable and tunable bandpass or bandreject filter, additional amplification, built-in high-pass and low-pass filters, built-in CCIR and A-weighting filters, and two sockets for optional filters. The bandreject filter is used only in THD+N and SINAD functions. The bandpass filter is used only in the SELECTIVE modes of AMPLITUDE and NOISE functions and in XTALK function. The output of either the principal meter or the wow and flutter discriminator feeds the primary reading detector. The primary detector, depending upon measurement function and setup parameters of that function, may have true RMS, average, or quasi-peak response. This primary reading detector is normally displayed in the upper-left corner of the display in PANELS mode and graphed with the solid lines in sweeps of all functions except PHASE. In LEVEL function the filters, additional amplification, and selectable detectors are excluded from the principal meter circuit in order that both meters become identical.

The secondary meter and reading detector have no selectable filters, less gain than the primary meter (10 mV minimum signal for fully-specified performance), and true RMS response only. The measurement of the secondary reading detector is displayed in the upper center portion of the display in LEVEL, THD+N, SINAD, PHASE, IMD, RATIO, W+F, and XTALK functions.

Either the PHASE measurement or the FREQUENCY counter measurement may be displayed in the upper right portion of the display in many functions. In PHASE function, the phase measurement is displayed in the upper left portion of the display.

The AC MAINS CHECK function works by measuring the input line voltage through very large resistors connected directly at the power mains input connector.

The signal monitored by the loudspeaker or headphones is normally picked off at the selected input channel, following input autoranging but preceding any filtering. An internal jumper may be changed to move the pickoff point to the end of the principal meter, following all filtering.

8.1.1. Rear Panel Connectors

A rear-panel BNC connector labeled SYNC carries a fixed-amplitude sinewave signal at the main oscillator frequency. The rear-panel INPUT BNC connector monitors the selected input channel following the input autoranging and thus provides a relatively constant amplitude even as the input signal amplitude varies from 25 mV to 140 Volts. The rear-panel ANLR connector carries the final signal from the principal meter, following all filters and other processing but preceding the detector.
Figure 8-1 Simplified Block Diagram, Portable One
8.1.2. Control, Display, and Operator Interface

A microprocessor (not shown) controls all selectable and variable functions such as generator frequency, generator amplitude, analyzer filter frequency, preamp range selection, filter selection, detector response selection, etc. The outputs of the detectors, frequency counter, and phase meter are also processed and formatted for display by the microprocessor. RAM powered by a back-up battery is used to store the last-used units and filter and mode selections for each measurement function so that they will be automatically restored when that function is next selected. EEPROM stores individual calibration factors for each instrument.

8.2. Generator Output Circuit

Figure 8-2 shows a simplified circuit diagram of the output circuitry of the Portable One generator. The power amplifier is transformer-coupled to a balanced, compensated resistive attenuator. This attenuator and an electronically-variable gain control in the generator circuit are both controlled by the instrument microprocessor in order to provide the specific output amplitude selected by the operator with the AMPLITUDE knob and buttons. The transformer center-tap is not dc connected to the instrument ground. When the 40 Ohm unbalanced mode is selected, signal is taken between the transformer center-tap and the high terminal of the transformer. Pin 2 of the generator XLR connectors is hot in unbalanced mode, working against pin 3 low. An additional 20 Ohm source resistance is switched in se-
ries with the high terminal in unbalanced mode to preserve the same source impedance as in balanced mode.

When the generator output is turned off, a floating 40 Ohm resistor is connected in place of the generator to back-terminate the output connector so that proper noise measurements may be made. Output impedance selection is made by switching buildout resistors at the output connector. When the INPUT GEN button is pressed so that the analyzer can measure generator output, the connection (labeled GEN MON) in the diagram is made directly across the output connector terminals. Note that the power amplifier, output transformer, and output attenuator are common to both output channels.

8.3. Analyzer Input Circuit

Figure 8-3 is a simplified diagram of one channel of the analyzer input. The circuit is a true instrument-grade differential (balanced) input. Both sides (pins 2 and 3) are loaded with 100,000 Ohms to ground, high enough to bridge most audio circuits. The net gain from the input connector to the analyzer proper is set by a combination of compensated resistive attenuator (zero, 20 dB, or 40 dB attenuation) and switchable-gain amplifiers (zero, +10, +20, or +30 dB gain). Both the attenuator setting and amplifier gain are microprocessor-controlled as part of an automatic ranging circuit, to maintain the signal level fed on to the remainder of the analyzer at an optimum level for low noise and distortion.
9. SPECIFICATIONS

GENERATOR CHARACTERISTICS

Signals
- Sine, square, IMD signal (optional)
Frequency Range
- 10 Hz-120 kHz, sinewave
- 20 Hz-30 kHz, squarewave
Frequency Resolution
- 0.02%
Frequency Accuracy
- ±0.5%
Amplitude Range
- 0.25 mV-26.25 V (-70 to +30.6 dBu) for 20 Hz-30 kHz sinewave;
- 0.25 mV-12.28 V (-70 to +24 dBu) for all other signals
Amplitude Resolution
- 0.01 dB
Amplitude Accuracy
- ±0.2 dB, sinewave;
- ±0.3 dB, squarewave and IMD
Output Impedances
- 600 BAL, 150^2 BAL, 40 BAL, 40 UNBAL; all ±2 Ohms.
Transformer coupled
Maximum Output Current
- 75 mA peak
Sinewave Flatness
- ±0.05 dB, 10 Hz-20 kHz;
- ±0.3 dB, 20 kHz-120 kHz
Sinewave THD+N\(^3\)
- 0.0025% + 3 µV (80 kHz BW),
- 25 Hz-20 kHz;
- 0.01% + 10 µV (>300 kHz BW),
- 10 Hz-50 kHz
Residual Output Xtalk
- 10 µV or -110 dB to 20 kHz
Squarewave Rise Time
- 2.5-3.0 µsec.

ANALYZER CHARACTERISTICS

Input Impedance
- 100 kΩ (±1%) / 130-200 pF, each side to ground
Maximum Rated Input
- 35 Vpeak; 140 Vrms, dc-20 kHz.
(250 Vrms, 48-63 Hz)
Common-Mode Rejection
- 70 dB, 50 Hz-20 kHz, V_{in} ≤2 V;
- 50 dB, 50 Hz-1 kHz, V_{in} >2 V

AMPLITUDE/NOISE FUNCTIONS

Measurements can be unweighted (UN-WTD), weighted (WTD), or SELECTIVE

Measurement Range
- <1µV-140 V [-118 to +45 dBu]
Accuracy
- ±0.2 dB UN-WTD;
- ±0.5 dB WTD or SELECTIVE
Flatness (UN-WTD)
- ±0.05 dB, 20 Hz-20 kHz
- ±0.2 dB, 10 Hz-50 kHz
- ±0.5 dB, 50 kHz-120 kHz
- 3 dB at >300 kHz
UNWTD Mode
- 400 Hz ±5% (3 pole)
- or <10 Hz (no highpass)
- plus
- 22 kHz ± 5% (5 pole)\(^4\),
- 30 kHz ± 5% (3 pole),
- 80 kHz ± 5% (3 pole),
- or >500 kHz (no lowpass)
WTD Mode Filters
- 400 Hz ±5% (3 pole) or
- <10 Hz (no highpass)
- plus
- "IEC-A" per IEC 179 (rms det.);
- "CCIR-QPK" per CCIR Rec 468;
- "CCIR-ARM" per Dolby Bulletin 19/4;
- "CCIR-RMS" (0 dB at 1 kHz, rms det.)
- AUX1 or AUX2 (option filters)
Selective Tuning
- Range
- 20 Hz-120 kHz ±3% (2-pole, Q=5)
Residual Noise
- 1.5 µV [-114 dBu], UNWTD 22-22 kHz;
- 1.0 µV [-118 dBu], WTD IEC-A;
- 5.0 µV [-104 dBu], WTD CCIR-QPK;

THD+N/SINAD FUNCTIONS

The THD+N function features three different tuning modes:
- "AUTO-TUNE" (determined by input frequency counter), "GEN-TRACK" (ganged to generator setting), or "FIX-TUNE" (set using the front panel frequency controls, ±3% lock range).
Measurements can be unweighted (UN-WTD) or weighted (WTD) using the same filter as the Amplitude/Noise function. Display also includes input level and frequency (notch frequency in FIX-TUNE mode).

Fundamental Range
- 10 Hz-100 kHz, THD+N mode;
- 400 Hz or 1 kHz (±3%), SINAD mode
Measurement Range
- <0.001%-100%
Accuracy
- ±1 dB, harmonics to 120 kHz
Residual THD+N\(^3\)
- 0.0025% + 3 µV (80 kHz BW),
- 25 Hz-20 kHz;
- 0.01% + 10 µV (>300 kHz BW),
- 10 Hz-90 kHz
Minimum Input
- 25 mV^2 [-30 dBu] in AUTO-TUNE mode;
- 800\(^2\) µV [-60 dBu] in other modes.
Nulling Time
- Typically 2-3 seconds above 25 Hz.
- Increases in a "1/V" fashion for inputs below 25 mV [-30 dBu]

WOW & FLUTTER FUNCTION

Measurements are processed to display only the highest ("PEAK") or second-highest ("20") of the previous 20 raw readings. Display also includes input level and frequency. The frequency readout can be selected to display the absolute frequency, or speed error relative to 3.00 kHz or 3.15 kHz.

Test Signal Frequency
- 2.8 kHz to 3.35 kHz
Detection Modes
- IEC (quasi-peak), NAB (average), or JIS
Response
- UNWTD (0.5-200 Hz BW) or WTD per IEC 386
Measurement Range
- <0.005%-3% (single range)
Accuracy
- ±5% of reading + 0.002%
Residual W+F
- ±0.005% WTD; ±0.01% UNWTD
Minimum Input
- 25 mV [-30 dBu]
LEVEL FUNCTION
Displays both input levels simultaneously, plus phase difference or frequency of the selected input.

Range <10 mV-140 V [-38 to +45 dBu].
Accuracy ±[0.1 dB +100 μV] (rms detection)
Response Flattness ±0.05 dB, 20 Hz-20 kHz;
(Vin ≥ 10 mV)
 ±0.2 dB, 10 Hz-50 kHz;
 ±0.3 dB, 50 kHz-120 kHz;
-3 dB at ≥300 kHz

RATIO FUNCTION
Measurement Range <~80 dB to +100 dB,
0.01 dB resolution
Accuracy ±0.1 dB, 20-20 kHz
Minimum Input 10 mV [-38 dBu], numerator signal;
10 μV [-98 dBu], denominator signal

PHASE FUNCTION
Measurement Ranges -270/±90°, -180/±180°, or -90/±270°,
0.1° resolution
Accuracy ±2°, 20 Hz-20 kHz,
±5°, 10 Hz-50 kHz
Minimum Input 25 mV^2 [-30 dBu], both channels

CROSSTALK FUNCTION
Similar to RATIO function except numerator signal is processed
by a tracking bandpass filter (2 pole, Q = 5).
Measurement Range -140 dB to 0 dB
Accuracy ±0.5 dB
Frequency Range 10 Hz-120 kHz
Residual Input Xtalk -120 dB at 20 kHz, R_s ≤600 Ohms
Minimum Input 25 mV^2 [-30 dBu] in reference channel

AC MAINS CHECK FUNCTION
Displays voltage, THD+N (20 kHz BW limited), and frequency
of the ac mains
Measurement range 0.85-1.10 of nominal setting
Voltage Accuracy ±1%

GEN FUNCTION
Displays the equivalent ac resistive loading on selected generator
output. Intended for checking input terminations, loudspeaker imped-
ance, or locating shorts.
Measurement Range <1 Ohm to 20 kOhm
Accuracy ±[5% +0.5 Ohm] for readings ≤ 1 kOhm. Degrades rapidly above 1 kOhm,
or with reactive loads.
Frequency Range 20 Hz-20 kHz
Test Voltage 200 mV default. Usable from 10 mV to generator maximum.

FREQUENCY MEASUREMENT (all functions)
Measurement Range <10 Hz-200 kHz
Accuracy ±0.01% [100 PPM]
Resolution 5 digits
Minimum Input 25 mV^2 [-30 dBu]

 AUXILIARY OUTPUT SIGNALS
Analyzer Signal Buffered analyzer output signal.
Typically 3 Vpp max, R_out = 600 Ohm ±10%.
Input Signal Buffered version of selected input.
0.8Vp-p-3 Vpp nominal range,
R_out = 600 Ohm ±10%.
Generator Sync 3 Vpp sinewave at same frequency as
generator (LF tone only with IMD).
R_out = 680 Ohm ±10%.

IMD OPTION CHARACTERISTICS
Generator Signal Selectable 50-60-70-250 Hz (±1%) plus
7 kHz or 8 kHz (±1%), mixed in a 4:1 ratio
(LF:HF)
Analyzer Signal Any combination of 40-250 Hz (LF) and
3 kHz-20 kHz (HF) tones, mixed in any
ratio from 0.1-81 (LF:HF)
Measurement Range <0.0025%-20%
Accuracy ±1 dB, per SMPTE RP120-1983, DIN 45403
Residual IMD 0.0025% [-92 dB], Vin ≥200 mV
Minimum Input 100 mV^2

GENERAL CHARACTERISTICS
Temperature Range 0C to +40C, operating
-20C to +60C, storage
Power Requirements 100/120/220/240 V (-12%/+10%),
48-63 Hz 50 VA max
Dimensions (WxHxD) 16.5 x 6.0 x 13.6 inches
[41.9 x 15.2 x 34.5 cm]
Weight Approx. 20 lbs [9.1 kg]

NOTES TO SPECIFICATIONS
1 Open-circuit, balanced source impedance selection. Reduce
maximum amplitude by a factor of 2 [-6 dB] with 40 Ohm
UNBALanced output impedance selection. Accuracy and flat-
ness are unspecified below 1 mV.
2 200Ω with option EGZ installed
3 System specification including contributions from both genera-
tor and analyzer. Generator R_load must be ≥600Ω.
4 Combined with 22 Hz highpass per CCIR Rec 468. “22 kHz-
QPK” selection uses quasi-peak detection per CCIR Rec 468.
5 For fully specified performance. Usable with inputs as low as
10 mV. Measurements are disabled for inputs below approxi-
mately 7-8 mV.
6 Input must be ≥10 mV with “%” or “dB” unit for specified ac-
curacy.
10. INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-weighting filter</td>
<td>Backlight, screen</td>
</tr>
<tr>
<td>1/3 octave filter</td>
<td>Balance</td>
</tr>
<tr>
<td>AC Mains Check</td>
<td>channel</td>
</tr>
<tr>
<td>setting bargraph end points</td>
<td>Balance/unbalance selection</td>
</tr>
<tr>
<td>AC Mains Check function</td>
<td>generator</td>
</tr>
<tr>
<td>AC mains power setting</td>
<td>Balanced input circuit</td>
</tr>
<tr>
<td>Alignment</td>
<td>Bandpass filter</td>
</tr>
<tr>
<td>tape recorder</td>
<td>tunable</td>
</tr>
<tr>
<td>Amplifier response measurements</td>
<td>Bandreject filter steering</td>
</tr>
<tr>
<td>Amplitude control generator</td>
<td>THD+N function</td>
</tr>
<tr>
<td>Amplitude function</td>
<td>Bandreject filter tuning</td>
</tr>
<tr>
<td>Amplitude measurements</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>two-channel</td>
<td>IMD</td>
</tr>
<tr>
<td>Amplitude range</td>
<td>Bandwidth vs fundamental frequency</td>
</tr>
<tr>
<td>level measurements</td>
<td>THD+N</td>
</tr>
<tr>
<td>Amplitude ratio</td>
<td>Bargraph calibration</td>
</tr>
<tr>
<td>IMD</td>
<td>AC Mains Check</td>
</tr>
<tr>
<td>Amplitude steps</td>
<td>Bargraph display</td>
</tr>
<tr>
<td>Analog display</td>
<td>Bargraph end point setting</td>
</tr>
<tr>
<td>Analysis range</td>
<td>AC Mains Check</td>
</tr>
<tr>
<td>IMD</td>
<td>Bargraph setting</td>
</tr>
<tr>
<td>Analyzer channel displayed</td>
<td>in phase function</td>
</tr>
<tr>
<td>Analyzer hardware block functional</td>
<td>Bargraph units vs numeric display units</td>
</tr>
<tr>
<td>description</td>
<td>Bias adjustments</td>
</tr>
<tr>
<td>Analyzer input circuit</td>
<td>tape recorder</td>
</tr>
<tr>
<td>Analyzer inputs</td>
<td>Block diagrams</td>
</tr>
<tr>
<td>ANALYZER rear connector</td>
<td>Built-in test</td>
</tr>
<tr>
<td>Analyzer set-up</td>
<td></td>
</tr>
<tr>
<td>ANLR DISPLAY</td>
<td></td>
</tr>
<tr>
<td>AUTO-TUNE mode</td>
<td></td>
</tr>
<tr>
<td>minimum amplitude required</td>
<td></td>
</tr>
<tr>
<td>Automatic screen turnover</td>
<td></td>
</tr>
<tr>
<td>AUTORANGE</td>
<td></td>
</tr>
<tr>
<td>disabling via HOLDRANGE</td>
<td></td>
</tr>
<tr>
<td>AUX filters</td>
<td></td>
</tr>
<tr>
<td>Auxiliary filter installation</td>
<td></td>
</tr>
<tr>
<td>Average mode</td>
<td></td>
</tr>
<tr>
<td>THD+N</td>
<td></td>
</tr>
<tr>
<td>Average-responding detector</td>
<td></td>
</tr>
</tbody>
</table>

- Averaging phase readings 5-14
- Azimuth adjustments tape recorder 7-1
- Backlight, screen 5-1
- Balance channel 5-17
- Balance/unbalance selection generator 5-2
- Balanced input circuit 8-4
- Bandpass filter tunable 5-4
- Bandreject filter steering THD+N function 5-12
- Bandreject filter tuning 5-4
- Bandwidth IMD 5-15
- Bandwidth vs fundamental frequency THD+N 5-13
- Bargraph calibration 5-5
- AC Mains Check 5-5
- Bargraph display 5-4
- Bargraph end point setting AC Mains Check 5-18
- Bargraph setting in phase function 5-15
- Bargraph units vs numeric display units 5-5
- Bias adjustments tape recorder 7-2
- Block diagrams 8-1
- Built-in test 3-1

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrating bargraph end points 5-5</td>
</tr>
<tr>
<td>AC Mains Check 5-5</td>
</tr>
<tr>
<td>CCIR filter 5-10</td>
</tr>
<tr>
<td>CCIR-ARM 5-10</td>
</tr>
<tr>
<td>CCIR-QPK 5-10</td>
</tr>
<tr>
<td>CD player dynamic range measurements 5-13</td>
</tr>
<tr>
<td>CD player measurements 7-2</td>
</tr>
<tr>
<td>Changing units 5-2</td>
</tr>
<tr>
<td>Channel balance</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Channel displayed</td>
</tr>
<tr>
<td>Channel select analyzer</td>
</tr>
<tr>
<td>generator</td>
</tr>
<tr>
<td>Communications receiver sensitivity measurements</td>
</tr>
<tr>
<td>Connectors</td>
</tr>
<tr>
<td>rear</td>
</tr>
<tr>
<td>Crosstalk function</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>Dark screen</td>
</tr>
<tr>
<td>dBg unit</td>
</tr>
<tr>
<td>dBm unit</td>
</tr>
<tr>
<td>generator</td>
</tr>
<tr>
<td>dBm units</td>
</tr>
<tr>
<td>dBm vs dBu recommendations</td>
</tr>
<tr>
<td>dB reference</td>
</tr>
<tr>
<td>dBu unit</td>
</tr>
<tr>
<td>Digit bobble in distortion measurements of tape recorders</td>
</tr>
<tr>
<td>DIN IMD</td>
</tr>
<tr>
<td>DIN IMD frequency selection</td>
</tr>
<tr>
<td>Dis-assembly</td>
</tr>
<tr>
<td>Display contrast</td>
</tr>
<tr>
<td>Display controls</td>
</tr>
<tr>
<td>Display invert</td>
</tr>
<tr>
<td>Display position vs channel</td>
</tr>
<tr>
<td>Display turn off, automatic</td>
</tr>
<tr>
<td>Display units bargraph vs numeric</td>
</tr>
<tr>
<td>Display viewing angle</td>
</tr>
<tr>
<td>Distortion measurements from tapes, discs</td>
</tr>
<tr>
<td>Distortion measurements on tape recorders</td>
</tr>
<tr>
<td>Drift (speed)</td>
</tr>
<tr>
<td>tape machines & turntables</td>
</tr>
<tr>
<td>Drift measurements</td>
</tr>
<tr>
<td>Dynamic range measurements compact disc player</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Emf</td>
</tr>
<tr>
<td>End points bargraph</td>
</tr>
</tbody>
</table>

F

- Factory default settings | 4-2 |
- Filter steering | 5-12 |
- THD+N function | 5-13 |
- FIX-TUNE mode | 5-2 |
- Fixed range | 5-5 |
- Frequency control | 5-5 |
- bandpass/bandreject filter generator | 5-7 |
- Frequency display | 5-7 |
- Frequency measurement minimum amplitude required for | 5-7 |
- Frequency range | 5-15 |
- IMD | 5-17 |
- W+F measurements | 7-1 |
- Frequency response measurements | 5-9 |
- Frequency steps generator | 5-18 |
- Frequency, relative | 5-7 |
- Frequency-selective measurements | 5-7 |
- Function buttons | 5-7 |
- Function selection | 5-7 |
- Functional hardware description, analyzer | 8-1 |
- Functional hardware description, generator | 8-3 |
- Functional self test | 3-1 |

G

- Gain measurements | 5-7 |
- Gain/loss measurements | 5-17 |
- Gen Load Function | 5-19 |
- GEN+ANLR DISPLAY | 5-2 |
- GEN-TRACK mode | 5-12 |
- Generator amplitude units | 5-2 |
- Generator hardware block functional description | 8-3 |
- Generator loading | 5-3 |
- Generator monitor | 5-2 |
- Generator output connections | 8-3 |
- Generator output impedance selection | 5-2 |
- Generator output loading | 5-4 |
Generator outputs 5-1
Generator set-up 5-2
Generator tracking 5-12
Generator voltage units 5-3
Generator-based amplitude units 5-7

H
Harmonic distortion 5-12
Headphones
monitor 5-6
Hi Fr error message 5-17
HOLD/RANGE mode 5-2
Hot pin unbalanced 7-1

I
IMD analysis frequency range 5-15
IMD bandwidth 5-15
IMD frequencies 5-15
IMD function 5-15
IMD waveform frequency selection 5-2
IMD waveform selection 5-2
IMD waveforms
generator 5-15
Impedance selection
generator 5-2
INC/DEC button frequencies 5-5
INC/DEC function
amplitude 5-5
frequency 5-5
Input channel select 5-1
Input impedance measurements 5-19
INPUT rear connector 5-7
Input resistance measurements 5-19
Input-output phase shift 5-14
Installing option filters 6-2
Intermodulation distortion function 5-15
Internal cables
generator-to-analyzer 5-2
Invert display 5-6
ISO center frequencies 5-5

L
Level function 5-11
Level measurements
amplitude range 5-12
Line voltage setting 3-1
Linearity adjustments 3-1
D/A converters 7-2

Lo Fr error message 5-17
Loading
generator 5-3
Loading both outputs 5-3
Longer screen backlight 5-1
Loss measurements 5-7, 5-17
Loudspeaker
monitor 5-6
Low error message 5-12, 5-18
Low frequency or phase indication 5-7

M
Matched systems 5-8
Maximum hold
bargraph feature 5-4
Measurement functions 5-7
Measurement units, absolute 5-7
Measurement units, relative 5-9
Minimum amplitude
THD+N measurements 5-13
Minimum amplitude for phase 5-15
Minimum hold
bargraph feature 5-4
MOL measurements 7-2
Monitor loudspeaker
channel monitored 5-1
MUTE button 5-1

N
Noise function 5-10
Noise-limited THD+N measurements 5-13
Notch filter steering
THD+N function 5-12
Notch filter tuning 5-4
Notch fixing for quantization distor-
tion 5-13
Numeric display units vs bargraph units 5-5

O
Open-circuit voltage 5-3
Opening front cover 3-1
Option filter installation 6-2
Optional filter 5-10
Oscilloscope monitoring 5-7
Oscilloscope triggering 5-6
Output loading
 generator 5-4
Output, unbalanced 8-3

P
Parameter setting 5-2
 analyzer 5-4
 generator 5-2
Phase
 minimum amplitude for 5-15
 Phase bargraphs 5-15
 Phase function 5-14
 Phase range 5-14
 Phase readings
 averaging 5-14
 Phase reference 5-14
 Phase shift
 input/output 5-14
Pin 2 hot unbalanced 7-1
Plug-in filter installation 6-2
Plug-in filters 5-10
Power line measurements 5-18
Power line voltage setting 3-1
Primary voltmeter 5-1
Push to set zero dBr 5-7

Q
Quantization distortion
 fixing notch filter 5-13
Quasi-peak detector 5-10

R
Range
 phase measurements 5-14
Range fixing 5-2
Ratio function 5-16
Ratio units 5-9
Rear connectors 5-6
Rear panel connectors 8-1
Reference channel
 phase measurements 5-14
Reference frequency
 speed error measurements 5-9
Relative frequency 5-9
Resolution
 frequency 5-5
Restoring factory default settings 4-2
Reverse termination 5-1

S
Screen saver 5-1
Secondary voltmeter 5-1
Selecting waveforms 5-2
Selective analysis 5-4
Selective filtering
 amplitude/noise 5-4
Selective measurements 5-18
Self test 3-1
Setting bargraph end points 5-5
 AC Mains Check 5-7
Setting dBr reference units 5-4
SINAD filter frequency 5-4
SINAD function 5-14
Sinewave selection 5-2
SMPTE IMD 5-15
SMPTE IMD frequency selection 5-2
Speed error
 tape machines & turntables 5-9
 Speed error measurements 5-17
 Squarewave selection 5-2
Steps
 amplitude 5-5
 frequency 5-5
Steps, amplitude
 Volts units 5-6
SYNC rear connector 5-6

T
Tape recorder alignment 7-1
Tape recorder azimuth adjustments 7-1
Tape recorder bias adjustments 7-2
Tape recorder EQ adjustments 7-1
Tape recorder measurements 7-1
Terminated systems 5-8
Termination
 generator 5-3
Termination measurements 5-19
THD+N
 average mode 5-13
 noise bandwidth critical 5-13
THD+N bandwidth vs fundamental frequency 5-13
THD+N filter tuning 5-4
THD+N function 5-12
THD+N measurement
 weighted 5-13
THD+N measurements
 minimum amplitude required 5-13
Third harmonic distortion measurements 7-2
Total harmonic distortion 5-12
Tracking external frequencies 5-12
Transformer ratio measurements 5-9
Tunable bandpass filter 5-4
Tuning notch filter in FIX-TUNE mode 5-13
Two hour screen backlight 5-1
Two-channel measurements 5-11
Two-way radio sensitivity measurements 5-14

U
Unbalanced connections 7-1
Unbalanced generator output connections 8-3
Units
 bargraph vs numeric display 5-5
 changing 5-2
 generator amplitude 5-2
Units, absolute 5-7
Units, relative 5-9
Unterminated systems 5-8
Unweighted response
 amplitude/noise 5-4

V
Viewing angle
 display 5-6
Voltage units
 generator 5-3
Voltage-based systems 5-8
Voltmeter
 primary 5-1
 secondary 5-1

W
W+F function 5-17
Wave analyzer function 5-4
Waveform selection 5-2
Waveform selection by measurement function selection 5-2
Weighted response

amplitude/noise 5-4
Weighting filters 5-10
Wow and flutter 5-17

X
X/Y units 5-9
Xtalk function 5-18
Xtalk measurements
 minimum amplitude required 5-18
AUDIO PRECISION, INC.

P.O. BOX 2209
BEAVERTON, OREGON U.S.A. 97075

TELEPHONE (503) 627-0832
U.S.A. TOLL-FREE 1-800-231-7350
FAX (503) 641-8906
TELEX 283957 AUDIO UR